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Abstract

Animal movement is a fundamental ecological process affecting the survival

and reproduction of individuals, the structure of populations, and the dynam-

ics of communities. Methods to quantify animal movement and spatiotempo-

ral abundances, however, are generally separate and therefore omit linkages

between individual-level and population-level processes. We describe an inte-

grated spatial capture–recapture (SCR) movement model to jointly estimate

(1) the number and distribution of individuals in a defined spatial region and

(2) movement of those individuals through time. We applied our model to a

study of polar bears (Ursus maritimus) in a 28,125 km2 survey area of the east-

ern Chukchi Sea, USA in 2015 that incorporated capture–recapture and telem-

etry data. In simulation studies, the model provided unbiased estimates of

movement, abundance, and detection parameters using a bivariate normal

random walk and correlated random walk movement process. Our case study

provided detailed evidence of directional movement persistence for both male

and female bears, where individuals regularly traversed areas larger than the

survey area during the 36-day study period. Scaling from individual- to

population-level inferences, we found that densities varied from <0.75

bears/625 km2 grid cell/day in nearshore cells to 1.6–2.5 bears/grid cell/day

for cells surrounded by sea ice. Daily abundance estimates ranged from 53 to

69 bears, with no trend across days. The cumulative number of unique bears

that used the survey area increased through time due to movements into and

out of the area, resulting in an estimated 171 individuals using the survey area

during the study (95% credible interval 124–250). Abundance estimates were

similar to a previous multiyear integrated population model using capture–
recapture and telemetry data (2008–2016; Regehr et al., Scientific Reports

8:16780, 2018). Overall, the SCR–movement model successfully quantified

both individual- and population-level space use, including the effects of land-

scape characteristics on movement, abundance, and detection, while linking
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the movement and abundance processes to directly estimate density within a

prescribed spatial region and temporal period. Integrated SCR–movement

models provide a generalizable approach to incorporate greater movement

realism into population dynamics and link movement to emergent properties

including spatiotemporal densities and abundances.

KEYWORD S
abundance, data integration, movement, polar bear, search–encounter, spatial capture–
recapture, telemetry

INTRODUCTION

Animal movement is a fundamental ecological process
(Nathan et al., 2008; Turchin, 1998). Movement is driven
by individual (e.g., sex, age) and spatiotemporal
(e.g., habitat) factors that subsequently affect demographic
rates, population structure, and community dynamics
(Kays et al., 2015; Morales et al., 2010). Movement pro-
cesses are of inherent interest (Hooten et al., 2017; Morales
et al., 2004), whereas identifying the influence of move-
ment on population-level processes such as resource selec-
tion, spatiotemporal abundances, and population dynamics
is necessary for a deeper understanding of how individuals
and populations respond to their environments (Hays
et al., 2016; Kays et al., 2015; Morales et al., 2010).
Although there have been recent advancements in move-
ment modeling (e.g., Hooten et al., 2017) and spatial popu-
lation ecology (e.g., Royle et al., 2013), a unified framework
for modeling movement and population dynamics is lac-
king (McClintock et al., 2021; Morales et al., 2010).

Spatial capture–recapture (SCR) is a dynamic set of
methods used to study abundance, density, and demogra-
phy of animal populations (Royle et al., 2013). SCR is
based on a thinned point process model, which extends
to multiple sampling methods and ecological investiga-
tions (e.g., Bischof et al., 2020; Glennie et al., 2019;
Linden et al., 2018; Royle et al., 2017; Sutherland
et al., 2015). To date, most SCR models have assumed
that individuals maintain static home ranges within a
season, where individual space use is modeled as a mono-
tonic decline with distance from an “activity center”
(e.g., Efford, 2019; Royle et al., 2013). Although some
SCR extensions relax the assumption of bivariate normal
space use (e.g., Linden et al., 2018; Murphy et al., 2016;
Royle et al., 2016; Sutherland et al., 2015), few have
explicitly modeled realistic movement processes (please
refer to review in McClintock et al., 2021). Extending
SCR models to include movement processes
(i.e., integrated SCR–movement models; McClintock
et al., 2021) provides new opportunities to connect move-
ment dynamics to population-level processes.

The widespread use of telemetry data allows increas-
ingly complex investigations into movement and behav-
ioral ecology (Hooten et al., 2017; Kays et al., 2015).
Connecting telemetry data to population-level patterns is
key to understanding movement ecology and how move-
ment affects spatiotemporal abundances and population
dynamics (Hays et al., 2016; Morales et al., 2010; Nathan
et al., 2008). Integrating telemetry and SCR data within
an SCR–movement model is a natural link to connect
telemetry data to population-level processes (McClintock
et al., 2021). Although SCR–movement models can be fit
with SCR data alone, the integration of telemetry data
will often be essential for the inclusion of realistic
movement processes (Gardner et al., 2022) and can
extend telemetry data to population-level inferences on
movement, resource selection, and distribution.

Here, we present an integrated SCR–movement
model that jointly describes the distribution of individ-
uals across a landscape, how individuals move, and how
movement processes affect exposure to sampling. We
conducted a simulation study to evaluate model perfor-
mance and then applied the model to a study of polar
bears (Ursus maritimus) in the eastern Chukchi Sea using
a combination of SCR and telemetry data. Polar bears are
distributed across the circumpolar Arctic and are listed as
threatened under the United States Endangered Species
Act (USFWS, 2008). Capture–recapture methods are com-
monly used to estimate polar bear abundance and density
(e.g., Bromaghin et al., 2015; Lunn et al., 2016; Regehr
et al., 2018), whereas telemetry studies are applied to
investigate bear movements and their association with
landscape features (e.g., Laidre et al., 2013; Wilson
et al., 2014). On the spring sea ice, bears do not display a
traditional activity center. Instead, individuals make
directional movements in search of foraging or mating
opportunities (Laidre et al., 2013), often covering areas
larger than the extent of capture–recapture surveys
(Bromaghin et al., 2015, Lunn et al., 2016, Regehr
et al., 2018). As such, non-spatial approaches to estimat-
ing density cannot disentangle the movement and abun-
dance processes, resulting in abundance estimates that
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reflect the cumulative number of individuals exposed to
sampling across the survey period (i.e., superpopulation).
Under these conditions, SCR–movement models provide
multiple advantages, including an explicit description of
population-level movement dynamics, spatially and tem-
porally defined abundance and densities, and the ability
to integrate multiple data sources. Conversely, the lack of
an explicit movement process in standard SCR models
limits the integration of detailed telemetry data and the
ability to jointly investigate hypotheses linking move-
ment, population, and landscape ecology.

METHODS

Model overview

We first describe a general SCR–movement model for the
joint estimation of movement, abundance, and detection
from SCR data. We parameterize an individual-level
movement process within an SCR framework to describe
how an individual’s daily location changes through time
(i.e., its trajectory), and the probability of detecting an
individual conditional on its trajectory. The SCR–
movement model can be expressed as a state space model
with three components: (i) the abundance and distribu-
tion of individuals on the first sampling occasion,
(ii) movement of individuals through time, and
(iii) spatial encounters of individuals. Specifically,

si1jθ½ � ð1Þ

represents the initial distribution of i¼ 1,2,…,N individuals

sitjsi 1:t�1ð Þ,θ
� � ð2Þ

represents the movement model for t¼ 2,3,…,T occa-
sions, and

yitjsit,θ½ � ð3Þ

the observation process where θ denotes a vector of all
unknown parameters (i.e., parameters describing initial
distribution, movement, and detection) and sit denotes
the daily average location of individual i on day t. The
movement model informs how an individual’s daily loca-
tion changes through time, which extends to various
movement processes (e.g., random walk, correlated ran-
dom walk; Hooten et al., 2017; Morales et al., 2004). To
reflect our case study, we use daily time steps (t), however,
the interval can be chosen based on study design, ecologi-
cal context, and computational considerations. Finally,

spatial encounter histories (yit) arise from an observation
model with parameters describing the detection process
conditional on the trajectory of an individual.

Case study

From 25 March to 29 April 2015, researchers conducted
helicopter surveys for polar bears in the Chukchi Sea west
of Alaska, USA (28 surveys spanning 36 days; Figure 1).
During each survey, observed bears were captured using
standard chemical immobilization techniques (Stirling
et al., 1989) and painted with a unique temporary mark to
allow for within-season resights (Figure 1). Researchers
also recorded the sex of each bear and, for adult females
with dependent offspring, the number of cubs (ages 0–
2 years old). GPS collars were applied to 15 females (ages
6–24 years old) and Argos satellite telemetry system tags
(from this point forwards Argos tags) were applied to
14 males (ages 2–23 years old). GPS collars recorded loca-
tion data every 2–4 h, whereas Argos tags recorded loca-
tions every 1–8 days (Figure 1). Additional details on
capture, processing, and telemetry methods are available
in Regehr et al. (2018) and Rode et al. (2015).

Modeling approach

Analysis of the case study follows the general approach
described in the Model Overview with extensions to investi-
gate (i) sex-specific movement, (ii) directional persistence,
(iii) latent group size (i.e., females with dependent off-
spring), and (iv) daily and cumulative bear abundance in a
spatially defined region within the study area. Objective
(iv) is particularly valuable for highly mobile species of
conservation concern (e.g., marine mammals, carnivores),
as management decisions are affected by the number of
individuals within a defined spatial and temporal domain
(i.e., density) as well as the cumulative number of individ-
uals that use an area during a defined period (Hays
et al., 2016; Lunn et al., 2016; Regehr et al., 2018). It is this
objective that cannot be solved using either conventional
movement modeling or SCR frameworks in isolation. We
describe our SCR–movement model using notation from
McClintock et al. (2021) with an emphasis on habitat-
influenced movement and search–encounter sampling
(Russell et al., 2012) protocols used in our case study.

Distribution and movement

On occasion 1, we assumed that locations (si1) for N indi-
viduals were distributed uniformly across areas with sea
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ice in a defined state space (M; Figure 1). We defined M
as a 420,000 km2 area, which extended >150 km from
the survey area and >75 km from all telemetry locations
(Figure 1). For computation purposes, we discretized M
into 1 � 1 km grid cells with each cell assigned a 1 if it
contained sea ice during the survey period and a 0 other-
wise (Cavalieri et al., 1996, Wilson et al., 2016;
Appendix S1:Figure S1). We modeled the grid cell of each
individual on occasion 1 (gi) as a categorical random vari-
able with cell probabilities π1:G, where πg is uniform for
cells with sea ice and zero otherwise. Specifically,

gi �Categorical π1:Gð Þ: ð4Þ

Each si1 is then assumed to be uniformly distributed
within grid cell gi (please refer to Data S1).

We modeled the average location of individual i at occa-
sions t¼ 2,3,…,T (sit) as a function of the individual’s
previous locations (sit�1) and an explicit movement

model. For this study, we evaluated two continuous-
space random walk movement models (Morales et al.,
2004) to describe how the average location of individual i
on day t changes through time and is influenced by dis-
tance to sea ice. We used potential functions (Brillinger
et al., 2012; Hooten et al., 2017; McClintock et al., 2021;
Preisler et al., 2013) to model the influence of sea ice on
polar bear movement (Wilson et al., 2014). Potential func-
tions can be conceptualized as a hilly landscape, where
movements are directed toward (or away from) certain
habitat characteristics based on the slope (Hooten
et al., 2017, McClintock et al., 2021). Estimating the influ-
ence of habitat covariates on movement is a primary objec-
tive of some studies, however, potential functions also
provide opportunities to restrict locations to ecologically
relevant areas of expected use (Brillinger, 2003; McClintock
et al., 2021; Preisler et al., 2013). Potential functions also do
not induce a specific home range shape, but instead allow
individuals to move through the landscape as a function of

F I GURE 1 Polar bear survey and data collection during 25 March to 29 April 2015 in the eastern Chukchi Sea. Data included

helicopter surveys (top left), capture–recapture event locations (top right), GPS telemetry locations (14 female bears; bottom left), and Argos

telemetry locations (15 male bears; bottom right). Surveyed area (45 25 � 25 km grid cells) and state space (dashed polygon) are also shown.

Colors and symbols denote different days for helicopter surveys and unique bears for GPS and Argos telemetry panels.
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movement characteristics (e.g., directional persistence, step
lengths) and landscape features (Hooten et al., 2017,
McClintock et al., 2021). In our context, bear locations are
not fully constrained to sea ice, but instead potential func-
tions direct movements away from areas that are farther
from sea ice (Appendix S1:Figure S1; Wilson et al., 2014;
please refer to “Results” section).

The first movement process model was a bivariate
normal random walk influenced by distance to sea ice
and sex-specific variance terms for movement (σsex);

sitþ1 �Normal sitþδrc sitð Þ,σsex i½ �I
� � ð5Þ

where c sitð Þ is the distance to sea ice covariate at an indi-
vidual’s current location, r is the gradient operator, δ
controls how bear movement responds to distance to sea
ice, σsex are sex-specific movement standard deviations in
the x- and y-direction, and I is a 2 � 2 identity matrix.
We calculated gradients using the ctmcmove package
(Hanks, 2018), which creates a vector field of partial
derivatives pointing in the direction of the greatest rate of
increase in a habitat covariate, in our case, areas with
minimum distance to sea ice. Therefore, δ > 0 implies
bears move toward areas with sea ice and are repelled
from areas with increasing distance to sea ice. The second
movement model we considered was a correlated random
walk with directional persistence (Morales et al., 2004)
that included sex-specific directional persistence (γsex)
and movement variance parameters (σ2sex), and the dis-
tance to sea ice potential function. Specifically,

sitþ1 �Normal sitþγsex i½ � sit� sit�1ð Þþδrc sitð Þ,σsex i½ �I
� �

ð6Þ

where γsex describes the directional persistence where
0≤ γ≤ 1. When γ¼ 0 the movement process reverts to a
bivariate normal random walk. This parameterization
of a correlated random walk focuses on the location
process (sit) but shares similarities to velocity models
that estimate step lengths and turning angles (Hooten
et al., 2017; Jonsen et al., 2005). For our case study, we
expected γsex > 0, as telemetry data suggested bears
moved with directional persistence (Laidre et al., 2013;
Figure 1). We limited exploration to these two sex-
specific movement models given the relatively low num-
ber of bears detected, limited encounter histories, and
sparse male telemetry data (Figure 1). The general frame-
work described above, however, is easily extended to
investigate more complex movement process and habitat
relationships in continuous and discrete space (Gardner
et al., 2022; McClintock et al., 2021).

Observation processes

Helicopter surveys occurred across J = 45 grid cells in
2015 (Figure 1), using 25 � 25 km grid cells to align
with the resolution of sea ice imagery (≈25 � 25 km
resolution). Following precedents for SCR search–
encounter models (Royle et al., 2013; Russell
et al., 2012), we treated each grid cell as an effective
trap. Encounter histories (yit) therefore denote the grid
cell of detection for individual i on day t. Individuals that
were not detected were assigned yit = Jþ1. Encounter
history data were modeled as categorical random
variables,

yit �Categorical ξitð Þ ð7Þ

where ξit is a vector of length Jþ1 describing the proba-
bility of detecting individual i on day t in each of the J
grid cells or non-detection (Jþ1). We modeled ξit using a
multinomial logit function of survey effort in cell j on day
t (xtj= km surveyed in cell j on day t), an immediate
behavioral response (Bit= 1 for the first survey after cap-
ture, 0 otherwise), and the Euclidean distance between
an individual’s average daily location and the grid cell
centroid (ditj;) using a half-normal detection function
with variance parameter σ2det (Russell et al., 2012).
Specifically,

mlogit ξitj
� �

¼ α0þα1log xtj
� �þα2Bitþ �d2itj=2σ

2
det

� �
:

ð8Þ

This observation model accounted for unequal survey
effort across space and time and the tendency to check
on bears during the survey immediately following first
capture.

Telemetry tagged bears provided location data inde-
pendent of helicopter surveys, including data on move-
ments beyond the surveyed area. We modeled telemetry
locations (μiτ) assuming,

μiτ �Normal sit,σ2detI
� � ð9Þ

where μiτ is a recorded telemetry location for individual i
at time τ� t�1, tð Þ. The variance parameter (σ2det) is
shared across the telemetry (Equation 9) and SCR
(Equation 8) observation submodels and allows us to
tease apart movements within an occasion (μiτ j sit,σ2det)
from movements across occasions (sitþ1 j sit,σsex,γsex,δ).
The number of locations per day varied by transmitter
settings but was restricted to a maximum of 4 (Figure 1).
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We followed the methods of McClintock et al. (2015) to
account for Argos telemetry error, assuming that reported
locations (uiτ) were bivariate normal random variables
with mean μiτ and a variance–covariance matrix
informed from error ellipse data provided by the
Argos tags.

Abundance

We used data augmentation to estimate the number of
independent bears (N) in the state space (Royle & Dora-
zio, 2012). Data augmentation introduces a data set of M
individuals where M� N and each individual has a
binary inclusion parameter zi, where zi ¼ 1 if the individ-
ual is part of the population and 0 otherwise. In our
study, all individuals were assigned a reproductive state
(ri = 1 [male], 2 [female without dependent offspring], or
3 [female with dependent offspring]; from this point for-
wards “reproductive state”), with separate augmentation
values for each group. Therefore,

zi �Bernoulli ψri

� � ð10Þ

where ψr is the probability an individual assigned repro-
ductive state r is part of the population (i.e., the N indi-
viduals in the state space). Reproductive state could also
be modeled as a latent categorical grouping variable
(Royle & Converse, 2014), however, we found that assig-
ning augmented individuals to a reproductive state and
using state-specific augmentation values (Mr) greatly
improved mixing and convergence.

Using data augmentation, the total number of
independent bears in the state space (M) is derived as
NM ¼PM

i¼1zi. Our primary interest, however, was the
ability of SCR–movement models to estimate abundance
in a defined spatial area (A) within the larger state
space, specifically where A is the area encompassing the
J = 45 sampled grid cells (Figure 1). To accomplish this,
we monitored an indicator variable wit during each Mar-
kov Chain Monte Carlo (MCMC) iteration, where wit ¼ 1
if sit �A and 0 otherwise. We then monitored daily abun-
dance within A as NAt ¼

PM
i¼1ziwit and the cumulative

number of individuals that used area A by occasion t as
N�

At ¼
PM

i¼1zi�max wi1:tð Þ, where max wi1:tð Þ = 1 if indi-
vidual i was present in area A at least once before or on
occasion t. As such, N�

AT is the cumulative number of
individuals that used area A during the study period (i.e.,
the superpopulation; Kendall et al., 1997).

For females with dependent offspring, we modeled
numbers of cubs (ni j ri ¼ 3 ) as a categorical random vari-
able. Specifically,

ni j ri ¼ 3�Categorical ω1:3ð Þ ð11Þ

where ω1:3 denotes the probability that a female with
dependent offspring (ri = 3) has 1, 2, or 3 young,
reflecting the possible litter sizes for Chukchi Sea polar
bears (Regehr et al., 2018). Here, ni is known for all
observed bears but latent (i.e., NA) and estimated for all
augmented individuals in reproductive class 3. We
derived the total number of dependent offspring during
each MCMC iteration as NCubs ¼

PM
i¼1ziI rið Þni, where

the indicator variable I rið Þ denotes if the female was in
reproductive class “female with offspring,” therefore
incorporating uncertainty in the abundance of females
with offspring (ziI rið Þ) and the unknown litter sizes of
those females (ni). Total abundance is subsequently
reported as the total number of bears (i.e., independent
individuals + dependent offspring) unless otherwise
noted.

Together, this integrated SCR–movement approach
models the latent abundance and locations of bears
(both observed and unobserved) at the start of the study,
and movement of those bears through time. Telemetry
data provide detailed information on the locations and
movement of collared bears, whereas aerial survey data
denote areas that were searched, locations of individu-
ally identifiable bears, and the number of dependent
cubs. As such, telemetry data directly inform parameters
for initial distribution, movement, space use, and latent
locations of collared individuals (π,σ,σ2det,γ,δ,sit). Aerial
survey data are linked to those same parameters while
also providing information on the detection (α), litter size
(ω), and data augmentation (i.e., abundance; zi) parame-
ters (Appendix S2).

Simulation study

We conducted two simulation studies to investigate the
ability of SCR–movement models to estimate parameters
and derive abundances without bias. The state space,
habitat covariates, and survey area followed from the
case study (Figure 1). We set N = 500 individuals and K
= 25 days. The initial distribution of individuals was
assumed to be uniform across sea ice within the state
space. In the first simulation, individuals moved via a
correlated random walk (σ=15.0, γ = 0.50) and surveys
occurred on 20 randomly selected occasions out of the K
= 25 days. To reflect stochastic survey effort, we ran-
domly selected 20 daily helicopter tracks out of 28 possi-
ble tracks recorded during the case study (Figure 1).
Detection parameters were set at α0 = �8.0, α1 = 2.5,
and σdet= 5.0 to reproduce observed sample sizes and
reflect case study results. We set the potential gradient
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parameter (δ = 50) to restrict individuals to locations on
or near the sea ice. In the second simulation, we investi-
gated the bivariate normal random walk with σ= 15.0,
γ = 0.00 and all other parameter settings remaining the
same. In all scenarios, the first 15 captured individuals
received telemetry tags that provided four locations (μiτ)
per occasion.

For each simulation, we generated and analyzed
100 data sets and evaluated model performance using
percent relative bias and 95% credible interval (CRI) cov-
erage of model parameters (σ, γ, σdet, α0, α1) and derived
daily and cumulative abundances in the survey area (NAt

and N�
AT , respectively). Our simulations were designed to

reflect common challenges in capture–recapture studies
of low-density populations of highly mobile individuals,
including small numbers of captured individuals (�35–
60 bears per study; mean = 46 bears), low encounter
rates (e.g., �50%, 25%, 15%, and <10% of bears detected
on 1, 2, 3, and >3 occasions, respectively), non-uniform
survey effort, and movement of individuals through the
survey area during the study. Complementary simulation
studies evaluating random walk and correlated random
walk models using a continuously operating trapping
grid are provided in Gardner et al. (2022).

Implementation

Models were fit using MCMC methods implemented in a
Bayesian framework using NIMBLE v0.10.0 (de Valpine
et al., 2017) accessed through R v4.0.0 (R Core Team
2018). For simulation studies, we ran three chains for
100,000 iterations with 25,000 iterations discarded as
burn-in and thinned to every 5th iteration to reduce file
size. For the case study, we increased the number of
chains to five and the number of iterations to 525,000 to
increase the effective number of posterior samples. We
assessed convergence using diagnostic plots and the
Gelman–Rubin statistic (bR; Gelman et al., 2013). Results
are reported as posterior medians and 2.5 and 97.5 per-
centiles (95% CRI) of retained posterior samples.

Vague priors were used for all parameters: indepen-
dent normal 0,sd¼ 10ð Þ for detection parameters (α),
gamma 0:01,0:01ð Þ for standard deviations (σsex, σdet),
Dirichlet 1ð Þ prior for litter size probabilities (ω1:3), and
Beta 1,1ð Þ for the directional persistence parameters
(γsex). Augmentation values were specific to each repro-
ductive state and set at 803 for males (M1), 480 for
females without dependent offspring (M2), and 317 for
females with dependent offspring (M3), which
guaranteed Mr �Nr . We used independent Beta 1,1ð Þ
priors for each inclusion probability (ψ1:3). Based on pre-
liminary examination, we used normal 50,sd¼ 1ð Þ for the

potential function parameter (δ), which restricts locations
to areas on or near the sea ice (Data S1). The potential
function parameter could not be estimated as too few
bears were observed near the shoreline; however, we
evaluated multiple values of δ and found that results
were robust to reasonable selections (e.g., similar abun-
dance and parameter estimates for δ = 25 or 50).

The model described above can be expressed in the
BUGS language (Lunn et al., 2000); however, to improve
MCMC efficiency we applied a custom NIMBLE func-
tion to update locations at occasion 1 and a custom
sampler to propose and evaluate full trajectories of aug-
mented individuals (Data S1 and S2). These
customizations increased effective posterior sample sizes
per unit time by more than an order of magnitude,
although run times for a single simulated data set still
required >5 days. R scripts are provided as Data S1 (sim-
ulation) and Data S2 (case study). Case study results are
also compared with results from a traditional SCR model
that excludes the movement model in Appendix S3.
Although not an objective of this study, this comparison
demonstrates the ability of SCR–movement models to
estimate a broader suite of ecologically relevant parame-
ters linking movement, detection, and abundance
(Appendices S2 and S3).

RESULTS

Case study

During data collection in 2015, observers recorded
73 detections of 48 independent bears (27 males,
14 females without offspring, seven females with off-
spring) on 28 sampling days across the 36-day sampling
period (Figure 1). Detections included 30 bears that were
observed once, 14 bears observed twice, three observed
on three occasions, and one bear observed on six occa-
sions. Of the seven females with dependent offspring,
two had one-cub litters, and five had two-cub litters. We
present results from the correlated random walk model
as male and female bears displayed directional persis-
tence (γsex > 0) and abundances were similar across
SCR–movement models.

Movement between occasions by male bears (σmale

= 14.9 km, 95% CRI: 11.8–19.4) was generally larger than
that of female bears (σfemale = 11.0, 95% CRI: 10.4–11.8;
Table 1), whereas directional persistence was similar
across sexes (γmale = 0.47, 95% CRI: 0.25–0.64;
γfemale = 0.51, 95% CRI: 0.44–0.58; Table 1). Within-occa-
sion movement (σdet = 5.11, 95% CRI: 5.00–5.24) was sig-
nificantly less than between-occasion movement
(σmale,σfemale; Table 1).
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Precision of posterior trajectories (i.e., the collection
of an individual’s estimated locations) varied by data
quality and quantity for each individual and highlighted
several advantages of the integrated SCR–movement
model (Figure 2). First, the SCR–movement model
allowed the estimation of individual-level space use for
all observed individuals (Figure 2). GPS collars resulted
in precise posterior trajectories; however, location uncer-
tainty prior to first capture remained noticeable
(Figure 2). Posterior trajectories from bears with Argos
tags displayed increased uncertainty due to fewer detec-
tions and less precise locations compared with GPS col-
lars (Figure 2). Posterior trajectories for individuals
without telemetry data displayed high levels of uncer-
tainty due to the low number of recapture events, but
locations were less likely to occur in areas with high sur-
vey effort (Figure 2). This point highlights an important
aspect of SCR–movement models, in which all parame-
ters, including latent locations, are informed by both
detection and non-detection data (e.g., telemetry, SCR
detections, and SCR surveyed areas without detections).

The SCR–movement model estimated individual- and
population-level space use, including the effects of land-
scape characteristics on movement, abundance, and

detection (Figures 2 and 3). For example, the movement
process required that bears navigate the landscape on or
near sea ice (Figure 2), replacing the standard SCR
assumption of monotonically declining space use cen-
tered around a single activity center. Similarly, telemetry
data informed the movement and detection processes,
when non-detections arose from individuals being out-
side the survey area and imperfect detection within the
survey area (Figure 2).

We found that bear spatial densities varied from
<0.75 bears/grid cell/day in nearshore cells and increased
to 1.6–2.5 bears/grid cell/day for cells surrounded by sea
ice (Figure 3). Variation in grid cell abundance reflected
the observed data, when nearshore cells had fewer telem-
etry locations and fewer SCR detections relative to areas
further offshore (Figures 1 and 3). Bear abundance out-
side the survey area converged toward an average of
≈1.14 independent bears per grid cell (95% CRI: 0.81–
1.66) and ≈1.45 total bears per grid cell (95% CRI:
1.01–2.17).

Daily abundance estimates in the surveyed area (NAt)
ranged from 53 bears (95% CRI: 34–84) to 69 bears (95%
CRI: 52–100; Figure 4) and displayed no clear trend
across days. The cumulative number of bears that used

TAB L E 1 Parameter estimates (median, 95% credible interval) for movement, detection, data augmentation, and litter size from an

integrated SCR–movement model using a correlated random walk (C-RW) or bivariate normal random walk (BVN-RW).

Parameter C-RW BVN-RW

Between-occasion movement

σmale 14.9 (11.8–19.4) 22.8 (20.1–26.1)

σfemale 11.0 (10.4–11.8) 13.3 (12.5–14.1)

γmale 0.47 (0.25–0.64) –

γfemale 0.51 (0.44–0.58) –

δ 50.1 (48.1–52.0) 50.0 (48.1–52.0)

Detection

α0 �7.98 (�10.89 to �5.47) �8.14 (�11.04 to �5.66)

α1 2.32 (1.65–3.10) 2.33 (1.67–3.12)

α2 0.52 (�1.10 to 2.10) 0.69 (�0.93 to 2.28)

σdet 5.11 (5.00–5.24) 5.10 (4.97–5.24)

Data augmentation

ψMale 0.30 (0.19–0.47) 0.33 (0.21–0.51)

ψFemale no offspring 0.29 (0.16–0.48) 0.34 (0.19–0.56)

ψFemale with offspring 0.23 (0.10–0.44) 0.27 (0.12–0.52)

Dependent offspring (1, 2, 3 offspring)

ω1 0.29 (0.08–0.60) 0.28 (0.07–0.60)

ω2 0.61 (0.30–0.86) 0.61 (0.30–0.86)

ω3 0.07 (0.00–0.33) 0.07 (0.00–0.34)

Note: Data are from polar bear surveys during 25 March to 29 April 2015 in the eastern Chukchi Sea. Please refer to “Methods” section for detailed parameter
descriptions.
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the surveyed area (N�
At); however, increased through

time (Figure 4). For example, the estimated cumulative
number of bears that used the survey area by days 10, 20,
and 36 were 96 (95% CRI: 66–145), 131 (95% CRI: 95–
191), and 171 individuals (95% CRI: 124–250), respec-
tively (Figure 4).

Estimated population structure of independent bears
consisted of 0.54 males (95% CRI: 0.41–0.67), 0.30 females
without dependent offspring (95% CRI: 0.19–0.43), and
0.16 females with dependent offspring (95% CRI: 0.08–
0.27). The probabilities of one, two, or three dependent
offspring were 0.29, 0.61, and 0.07, respectively, or an
average of 1.72 dependent offspring per female with
dependent offspring (Table 1). Detection probability
increased with increasing survey effort (α1 = 2.32, 95%
CRI: 1.65–3.10) and was higher during the first survey
after capture (i.e., immediate trap response) but estimates
of an immediate trap response overlapped zero
(α2 = 0.52, 95% CRI: �1.10 to 2.10; Table 1).

Simulation studies

The correlated random walk and bivariate normal ran-
dom walk models performed well under sampling sce-
narios that included small numbers of captured
individuals, low encounter rates, highly variable spa-
tial survey effort, and habitat-influenced movement
processes (Appendix S4: Table S1). Percentage relative
bias was ≤0.2% for movement parameters (σ, γ) and
≤4% for detection parameters (α0, α1, σdet; Appendix S4:
Table S1). For correlated random walk simulations, daily
true, and estimated abundances within the survey area
averaged 54.2 and 55.5 individuals, respectively, with
mean daily abundance estimates within �2 individuals of
the true value (Appendix S4: Table S1). Daily local abun-
dance estimates in the bivariate normal random walk
simulation were even closer to true values (�1 individ-
ual; Appendix S4: Table S1). For both simulations, credi-
ble interval coverage ranged from 0.93 to 1.00 for

F I GURE 2 Posterior trajectories of four individual polar bears during the 36-day sampling season (red; 5000 samples from posterior

distributions). Female with GPS tag (top left), male with Argos tag (top right), female captured twice (bottom left), male captured once

(bottom right). Capture and resight events (black dots), telemetry locations (blue dots), and surveyed area (25 � 25 km grid cells) are also

shown.
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parameters and 0.92 to 1.00 for derived abundances
(Appendix S4: Table S1).

DISCUSSION

We describe an integrated SCR–movement model to con-
nect individual-level movement dynamics to population-
level spatiotemporal abundances. Our polar bear case
study and simulation examples illustrate advantages of
incorporating greater movement realism into SCR
models, and the ability of SCR–movement models to
investigate shared hypotheses across movement, popula-
tion, and landscape ecology (McClintock et al., 2021).
Large movements of individual polar bears in our case

study demonstrated the importance of SCR–movement
models, which revealed sex-specific movement processes,
highly dynamic detection probabilities, and spatial varia-
tion in bear density as a function of landscape character-
istics. Together, integrated SCR–movement models
provide new opportunities to explore ecological questions
and address persistent study design challenges.

Our estimates of polar bear density in the eastern
Chukchi Sea (≈0.002 bears/km2; 95% CRI: ≈0.001–0.004)
align with average estimates for the period 2008–2016
from an integrated population model encompassing a
similar region (0.0030 bears/km2, 95% CRI: 0.0016–
0.0060; Regehr et al., 2018). Many polar bear abundance
studies utilize capture–recapture methods (Bromaghin
et al., 2015; Hamilton & Derocher, 2019; Lunn et al.,
2016; Regehr et al., 2018), although comparisons among
non-spatial abundance estimates are difficult because the
effective study population is an unknown function of
spatial coverage, survey duration, and movement
(Kendall et al., 1997; Lunn et al., 2016). This can lead to
substantive bias in estimates of demographic parameters
used for management (Regehr et al., 2009). Our SCR–
movement model solves this challenge by linking the
movement and abundance processes to directly estimate
density within a prescribed spatial region and temporal
period. For example, we estimated abundance in the sur-
vey area of ≈53–69 bears/day, whereas the cumulative
number of bears exposed to sampling (i.e., “effective
study population”) increased daily due to bears moving
into and out of the survey area (Figure 4). Although our
case study focused on a polar bear abundance and
movement in nearshore area, approaches integrating
aerial surveys and telemetry data provide new opportuni-
ties to link movement ecology to spatial planning and
conservation efforts including marine protected areas
(e.g., Conn et al., 2021; Lennox et al., 2019; Ogburn et al.,
2017) and offshore energy development that increasing
affect marine megafauna (Sequeira et al., 2019; Wilson
et al., 2014).

A unified modeling framework for movement and
population ecology from an individual-based movement
perspective has multiple advantages (Nathan et al., 2008).
Specifically, it facilitates exploration into the causes and
patterns of movement, with far reaching consequences on
emergent properties such as spatiotemporal abundance,
species interactions, and population-level responses to
management actions (McClintock et al., 2021; Morales
et al., 2010). For example, SCR–movement models pro-
vided more realistic space use and observation processes
in our polar bear case study, whereby detections arose
from the combination of individuals and observers making
directed movements through the landscape, instead of
bears randomly moving around an activity center and

F I GURE 3 Mean daily polar bear abundance (independent

bears + dependent offspring) per surveyed grid cell (25 � 25 km

grid cells) during 25 March to 29 April 2015. Please refer to

Figure 1 for data and survey area details.

F I GURE 4 Daily (black dots) and cumulative (gray dots) polar

bear abundance in the surveyed area (independent

bears + dependent offspring) across the 36-day sampling season

(25 March to 29 April 2015). Values are posterior medians (95%

credible intervals). The number of individuals observed on

surveyed days are denoted by open squares.
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observers remaining in fixed locations (Royle et al., 2013).
Furthermore, individual-level locations (sit) are directly
linked to spatiotemporal abundances (NAt). As such,
individual-level movement and population-level abun-
dance are linked, where processes formulated at one level
correspond to properties exhibited at the other (Hooten
et al., 2017; McClintock et al., 2021; Royle et al., 2013;
Turchin, 1998).

Studies on the location and spatial distribution of
individuals use a variety of sampling methods. A dichot-
omy in conceptual approaches often exists, however, in
which studies focus on quantifying either the movements
of individual organisms (i.e., Lagrangian perspective) or
the number of animals that use or move through a fixed
location (i.e., Eulerian perspective; Turchin, 1998). SCR–
movement models bridge these conceptual approaches to
unify individual- and population-level processes. Here,
the shared point process model allows quantification of
both individual movement (e.g., step lengths, persistence,
velocity) and changes in densities or numbers of individ-
uals at defined spatial locations (e.g., the state space or
region within the state space). Quantifying spatiotempo-
ral landscape use and spatial distributions of populations
(which is a result of individual-level movement) is crucial
to understanding the responses to ecosystem change.
Potential applications of SCR–movement model concepts
abound, with logical extensions focused on incorporating
habitat-driven movement and resource selection
(e.g., step selection functions; Avgar et al., 2016), integra-
tion of auxiliary data at various spatial scales, and multi-
year open-population SCR models to explore the effects
of within- and among-year movement on population
dynamics (Bischof et al., 2020; Glennie et al., 2019). The
unification of movement and population ecology also has
numerous applied benefits including an improved under-
standing of how and why populations respond to man-
agement actions related to marine spatial planning
(e.g., Lennox et al., 2019; Ogburn et al., 2017), energy
development (e.g., Wilson et al., 2014), and conservation
of migratory species (e.g., Sequeira et al., 2019).

Spatial processes are an important component of eco-
logical predictions, but quantifying relationships between
individual-level movement and changes in abundance is
difficult in conventional demographic and movement
models (Hooten et al., 2017; Morales et al., 2010; Royle
et al., 2013). SCR–movement models explicitly describe the
mechanistic links between movement and population
dynamics, providing new ways to investigate how spatio-
temporal patterns of abundance are shaped by individual-
level movement. For example, it is generally accepted that
movement dynamics respond to changing resource avail-
ability and density-dependent factors, which affect
individual-level fitness and ultimately population dynamics

(Ims & Andreassen, 2005; Nathan et al., 2008). SCR–
movement models formalize these topics in a unified
approach to explicitly investigate connections between
movement and population dynamics, providing a substan-
tial progression toward connecting movement, landscape,
and population ecology (McClintock et al., 2021).

Our goal in this paper was to systematically describe
and demonstrate the building blocks of SCR–movement
models, where parameters summarize movement patterns,
individual-level space use, and spatiotemporal densities.
SCR–movement models offer an approach to quantify the
causes, patterns, and consequences of animal movement,
abundance, and population dynamics that are central to
understanding and managing populations and the land-
scapes that support them (Kays et al., 2015; Morales
et al., 2010; Nathan et al., 2008). Future applications of
SCR–movement models that incorporate a variety of spatial
data collection protocols will increase their applicability and
the ability to connect movement and population dynamics.
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